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Abstract—Big data validation and system verification are crucial for ensuring the quality of big data applications. However, a rigorous

technique for such tasks is yet to emerge. During the past decade, we have developed a big data system called CMA for investigating

the classification of biological cells based on cell morphology which is captured in diffraction images. CMA includes a collection of

scientific software tools, machine learning algorithms, and a large-scale cell image repository. In order to ensure the quality of big data

system CMA, we developed a framework for rigorously validating the massive scale image data as well as adequately verifying both the

software tools and machine learning algorithms. The validation of big data is conducted by iteratively selecting the data using a

machine learning approach. An experimental approach guided by a feature selection algorithm is introduced in the framework to select

an optimal feature set for improving the machine learning performance. The verification of software and algorithms is developed on the

iterative metamorphic testing approach due to the non-testable property of the software and algorithms. A machine learning approach

is introduced for developing test oracles iteratively to ensure the adequacy of the test coverage criteria. Performance of the machine

learning algorithm is evaluated with a stratified N-fold cross validation and confusion matrix. We describe the design of the proposed

big data verification and validation framework with CMA as the case study, and demonstrate its effectiveness through verifying and

validating the dataset, the software and the algorithms in CMA.

Index Terms—Big data, diffraction image, machine learning, deep learning, metamorphic testing
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1 INTRODUCTION

VOLUME, velocity, variety, and value are the four charac-
teristics that differentiate Big Data from regular data [1].

Volume and velocity refer to the unprecedented amount of
data and the speed of its generation. Big Data is complex and
heterogeneous. To extract value from the data, special tools
and techniques are needed. New algorithms, scalable and
high performance processing infrastructure, and analytics
tools have been developed to support big data research. For
example, deep learning algorithms have been widely
adopted for analyzing big data [2]. Hadoop provides a scal-
able and high-performance infrastructure for running big
data applications [3], and NoSQL databases are used for stor-
ing and retrieving big data [4]. To ensure reliability and high
availability, big data applications and infrastructure have to
be validated and verified. However, the four characteristics
of big data create new challenges for the validation and veri-
fication tasks [5]. For example, data selection and validation
are critical to the effectiveness and performance of big data
analysis, but large volume and variety create a grand chal-
lenge. Existing work has shown that abnormal data existing

in datasets could substantially impact the value extraction
and decrease the accuracy of data analysis [6].

Many data analytics tools are complex and are difficult to
test due to the absence of test oracles. Other approaches for
verifying complex software are either impractical or infeasi-
ble. The machine learning algorithms used for processing
big data are also difficult to be validated given the volume
of data and unknown expected results. Although there are
significant work on the quality assurance of big data, verifi-
cation and validation of machine learning algorithms and
“non-testable” scientific software, little work has been done
on systematic validation and verification of a big data sys-
tem as a whole.

The focus of research presented in this paper is on the
validation and verification of data analytics software and
algorithms as well as big data. To achieve the best valida-
tion and verification performance, feature representation,
feature extraction and feature selection for machine learning
used in the framework are also discussed.

The verification and validation framework proposed in
this paper is illustrated in Fig. 1, which includes tasks in
three layers. The foundation layer provides techniques for
big data validation through automated selection and classifi-
cation of big data. The middle layer features an approach for
verification and validation of machine learning algorithms
including feature representation, extraction and optimiza-
tion. Lastly, the top layer provides an approach for testing
domain modeling systems, data analytics tools and applica-
tions. The framework covers the essential verification and
validation tasks that are needed for any big data application,
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and the techniques and tools proposed in this paper can be
easily applied to the quality assurance of other big data
applications.

We explain the proposed approach and demonstrate its
effectiveness with a case study—a big data system called
Cell Morphology Assay (CMA) for automated classification
of diffraction images of biological cells. CMA is innovative
in that it provides a means for rapid assay of single cells
without the need to stain them with fluorescent reagents. It
also provides researchers a significant source of big data
and tools to conduct research and develop big data applica-
tions. CMA adopts big data techniques to implement data
management, analysis, discovery, applications for the
development of morphology based cell assay tools. It
includes a collection of scientific software tools for process-
ing and analyzing image data, machine learning algorithms
for feature selection and cell classifications, and a database
for managing the big data.

The verification and validation framework of CMA sup-
ports image data validation, verification and validation of
the machine learning algorithms and the scientific software.
A large number of diffraction images comprise the image
database. The validation of the image data is implemented
with a machine learning approach for automatically select-
ing and classifying images. In order to find a better machine
learning algorithm for the classification, different feature
representations were investigated and reported. The valida-
tion of machine learning algorithms consists of two steps.
First, optimized features are selected to achieve best perfor-
mance and effectiveness of the machine learning algo-
rithms. Different feature selection approaches are used for
cross checking the selected features. N-Fold Cross Valida-
tion (NFCV) of the machine learning results is done in the
second step.

The verification and validation of the scientific software
in CMA is conducted with an iterative metamorphic testing
[7], which is a metamorphic testing extended with iterative
development of test oracles [8]. One major component of
CMA is a collection of scientific software for supporting sci-
entific investigation and decision making [9]. For example,
3D structure reconstruction software and light scattering
modeling software are two such pieces of software in CMA.
Many scientific software systems are non-testable because
of the absence of test oracles [7], [9]. Metamorphic testing
[7], [10] is a novel software testing technique and a promis-
ing approach for solving oracle problems. It creates tests
according to metamorphic relation (MR) and verifies the
predictable relation among the outputs of the related tests.

However, the application of metamorphic testing to large-
scale scientific software is rare because the identification of
MRs for adequately testing complex scientific software is
infeasible [9]. This paper introduces an iterative approach
for developing MRs, where MRs are iteratively refined with
reference to the analysis of test execution and evaluation
results.

Although big data has become an important area of
research recently, systematic work on quality assurance of
big data is rare in literature. The framework introduced in
this paper offers a comprehensive solution for ensuring the
quality of big data. The framework is illustrated through
verification and validation of CMA components. The case
study demonstrates the effectiveness of the proposed frame-
work. The framework is extensible and is easy to adapt to
big data systems.

The rest of this paper is organized as follows: Section 2
describes big data system CMA. Section 3 introduces the
feature selection and validation for machine learning algo-
rithms. Section 4 discusses the selection and validation of
image data. Section 5 explains the testing of scientific
software in CMA. Section 6 describes the related work, and
Section 7 concludes the paper.

2 MASSIVE SCALE IMAGE DATA SYSTEM CMA

Like many other big data systems, CMA includes a big data
repository, a group of software tools for processing and ana-
lyzing the big data, and a set of data analytics algorithms. In
this section, we discuss the architecture of CMA, the data-
base, the software tools and algorithms.

2.1 The Architecture of CMA

Cells are basic elements of life. They possess highly varied
and convoluted 3D structures of intracellular organelles to
sustain their phenotypic variations and functions. Cell assay
and classification are central to many branches of biology
and life science research. While genetic and molecular assay
methods are widely used, morphology assay is more suit-
able for investigating cellular functions at single-cell level.
Significant progress has been made over the last few deca-
des on fluorescent-based non-coherent imaging of single
cells. Such techniques are used in immunochemistry for the
study of molecular pathways and phenotypes and morpho-
logical assessment. However, microscopy based non-coher-
ent image data is labor-intensive and time-consuming to
analyze because they are 2D projections of the 3D morphol-
ogy with objects too complex for automated segmentation
in nearly all cases. For example, despite the availability of
various open-source software systems for pixel operations,
much of object analysis of cell image data relies heavily on
manual interpretation [11].

3D cell morphology provides rich information about cells
that is essential for cell analysis and classification. Diffrac-
tion images of single cells are acquired using a polarization
Diffraction Imaging Flow Cytometer (p-DIFC), which was
invented and developed by co-author Hu [12]. Co-authors
Ding and Hu have been studying cell morphology assay
and classification for over a decade and developed big data
system CMA. This system is used for modeling and
analyzing 3D cell morphology and to identify and extract

Fig. 1. A schema for V&V of big data systems.
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morphology patterns from the diffraction images of biologi-
cal cells to support automated cell classification. The
morphology patterns can be viewed as “morphology finger-
prints” and are defined based on the correlations between
the 3D morphology and diffraction patterns of light scat-
tered by cells of different phenotypes.

The architecture and data flow of CMA is shown in
Fig. 2. CMA includes four major components: a database,
software tools for investigating 3D morphology of cells,
another set of software tools for extracting morphology fin-
gerprints from diffraction images of cells, and a framework
for cell classification study. The foundation of CMA is the
database, and the core of CMA is a set of data analytics and
image processing algorithms. The principal function of
CMA is realized by a collection of software components,
which compute the morphology fingerprints from diffrac-
tion images. The fringe pattern of a diffraction image
defines the unique 3D morphology information of the cell
type. Therefore, fringe patterns extracted from diffraction
images could be effective for classifying cell types. How-
ever, means for defining the fringe patterns, how these

patterns are correlated to 3D morphology of a cell, and find-
ing the optimal fringe pattern parameters for the classifica-
tion are unknown. CMA is designed to answer these
questions.

In order to investigate the correlation between the fringe
pattern of a cell diffraction image and the 3D morphology of
the cell, we model the light scattering properties of a cell
based on its 3D morphology parameters using a scientific
software tool. The modeling result of the light scattering of a
cell is converted into a diffraction image, and the correlation
between the 3D morphology parameters and the fringe pat-
tern of the diffraction image is established through an experi-
mental study, which systematically changes the values of the
3D parameters to see the corresponding changes of the fringe
pattern in the diffraction image. To generate the 3Dmorphol-
ogy parameters of a cell, a stack of confocal image sections
are taken from the cell using a confocal microscope. Next,
the confocal image sections are reconstructed for the 3D
structure of the cell, and each cell organelle in the recon-
structed 3D structure is assigned with a refractive index
value. The 3D morphology parameters comprise a 3D

Fig. 2. An overall structure of CMA.
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structure with assigned refractive index value for every cell
organelle. The studywould establish themorphology finger-
prints that can be used for classifying cells. Once the selected
morphology fingerprints are refined and confirmed, they are
used for classifying diffraction images using machine learn-
ing algorithms. Depending on the machine learning algo-
rithm selected for the classification, suitable morphology
fingerprints need to be selected and optimized for better clas-
sification accuracy and performance.

We call the diffraction images that are taken using a
p-DIFC instrument as measured diffraction images, and the
diffraction image that is calculated using the modeling
software as calculated diffraction image.

2.2 The Database

The database system is developed using MongoDB [13] and
MongoChef [14] as client application to support remote
access via Internet. Given that the number and the type of
features vary from one application to another, relational
databases are not suitable for CMA implementation. Fur-
thermore, the data is primarily used for analytics rather than
query and update, NoSQL MongoDB is a preferred choice
over relational databases. The image data stored in the data-
base includes three collections: measured diffraction images
and their processing results; calculated diffraction images
and their processing results; and the 3D reconstructed struc-
tures and morphology parameters data and the correspond-
ing confocal images. The measured diffraction images of
cells are acquired using p-DIFC, and the calculated diffrac-
tion images are generated using a light scattering modeling
tool called ADDA [15], [16]. ADDA is an implementation of
Discrete Dipole Approximation (DDA) [15]. The confocal
images of cells are taken using confocal microscopes and are
used for reconstructing the 3D structure of cells. The data
processing results include 3D cell structure data, 3D cell mor-
phology parameters that are individual segmentation results
of intracellular organelles in each confocal image section; cal-
culated results from ADDA simulation; feature values of
each diffraction image; experiment results of feature selec-
tion; training and test data sets for machine learning, labeled
images for cell classifications; and other results.

More than 600,000 images and their related data process-
ing results have been added to the database, and new data
is added daily. The data in the database may also contain
noise images. For example, if a blood sample contains
non viable cells or small particles, the diffraction images
taken from such a sample will include abnormal diffraction
images. If the latter are labeled as viable cells in the training
set, the accuracy of the cell classification could be substan-
tially decreased [6]. Therefore, classification and separation
of the abnormal data is important for ensuring high classifi-
cation accuracy. In this paper, we use two machine learning
approaches to address the issue. The first is Support Vector
Machine (SVM) [17] based approach, which is integrated
with image processing algorithms for automatically identi-
fying abnormal diffraction images and separating them
from the normal ones. We tried different SVM kernel func-
tions in our experiments, and only the linear kernel function
produced the best results. The second is a deep learning [18]
based approach. We experimented different deep learning
architectures, and AlexNet [19] produced the best results.

2.3 A High Speed GLCM Calculator

To enable quantitative characterization of fringe patterns in
the diffraction images, Gray-Level Co-occurrence Matrix
(GLCM) [20], [21] features are computed. Haralick pro-
posed GLCM for describing computable texture features
based on gray-tone spatial dependencies [22]. It defines
how often different combinations of gray level pixels occur
in an image for a given displacement/distance d at a partic-
ular angle u. The distance d refers to the distance between
the pixel under observation and its neighbor. The defini-
tions of GLCM features of diffraction images include 14
original features and 3 extended ones [23]. We developed a
parallel program using NVIDIA’s CUDA on GPUs for com-
puting GLCM and the 17 features to achieve computational
speedup. The size of the co-occurrence matrix scales
quadratically with the number of gray levels in the image.
The diffraction image in our study is normalized to an 8-bit
gray-level range from the originally captured 14-bit image.
However, the GLCM implementation supports a wide
range of gray-levels. The results of the optimized GPU
implementation show an average speedup of 7 times for
GLCM calculation, and 9.83 times speedup for feature cal-
culation [24]. The GLCM matrix and feature calculation
results are also checked against a Matlab implementation
[23], and a serial implementation in Java.

2.4 The Machine Learning Algorithms

SVM, k-means clustering, and deep learning are the
machine learning algorithms used in this study. The goal of
SVM is to build a classification model using training data
where each instance has a target value (or class label) with a
set of attributes (or features). Once the model is trained, it is
used to predict target values for the test data with unknown
target values [17]. SVM performs binary classification in
general; however, several SVM classifiers can be combined
to do multiclass classification by comparing “one against
the rest” or “one against one” approaches. The basic idea of
a SVM is to map the feature data on to a higher dimensional
feature space and determine a maximum margin hyper
plane or decision boundary to separate the two classes in
the feature space. Margin is the distance between the hyper-
plane and the closest data point. SVM has been widely used
in many applications such as classifying cancers in biomedi-
cal analysis, text categorization, and hand written character
recognition. The k-means clustering algorithm allows sepa-
ration of events into k classes according to their distances to
k centers under appropriate conditions. If an event is closer
to a center c1 than the others, it is assigned to the cluster rep-
resented by the center c1 [25].

To improve the performance and accuracy of cell classifi-
cation based on diffraction images, we conducted an empir-
ical study to find an optimized feature set for the machine
learning. The feature set for SVM based classification of dif-
fraction images is defined by the GLCM features. However,
the feature set calculated from GLCM often contains highly
correlated features and creates difficulties in computation,
and model building [26]. An approach called Extensive Fea-
ture Correlation Study (EFCS) was used in this research to
select an optimal feature set based on the features’ formula-
tion and numerical results on diffraction images. The results
are validated using the Correlation based Feature Selection
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algorithm (CFS) [26] study and other research results. Based
on EFCS result, we conducted an SVM based classification
experiment with combinations of the selected features to
find an optimal set of GLCM features. The empirical study
also suggests the optimal GLCM displacement d and image
gray level g for cell classification. Validation of the classifica-
tion is conducted with 10FCV [23] and confusion matrix.

Over the past few years, deep learning approach has
become very popular for classification problems [18]. Its
breakthroughs ranging from halving the error rate for image
based object recognition [19] to defeating professional Go
game player in late 2015 [27]. A neural network performs
image analysis through many layers, with early layers
answering very simple and specific questions about the
input image, and later layers building up a hierarchy of ever
more complex and abstract concepts. Networks with this
kind of many-layer structure are called deep neural net-
works. Researchers in the 1980s and 1990s tried using sto-
chastic gradient descent and back-propagation to train deep
networks. Unfortunately, except for a few special architec-
tures, deep neural network approaches did not succeed. The
deep networks would learn, but very slowly to be of any
practical use. Since 2006, a set of techniques has been devel-
oped that enable learning in deep neural networks. These
techniques are based on stochastic gradient descent and
back-propagation, but also introduce new ideas. These tech-
niques have enabled much deeper (and larger) networks to
be trained. It turns out that they perform far better on many
problems than regular neural networks due to their ability to
build a complex hierarchy of concepts. In this research, we
conducted a preliminary investigation on automated selec-
tion and classification of diffraction images using a deep
Convolutional Neural Network (CNN) called AlexNet [19].
We compare the accuracy and performance of the classifica-
tion between SVMbased and deep learning approaches.

2.5 The Software for Reconstructing the 3D
Structure of a Cell

The special-purpose software was built for reconstructing
3D structure of a cell by processing its confocal image sec-
tions. The 3D structure of a cell is constructed using the rec-
ognized cell organelles in each confocal image section,
which is acquired with a stained cell translated to different
z-positions using a confocal microscope. Each image repre-
sents a section of the cell structure with very short focal
depth (i.e., 0.5 mm) along the z-axis. Individual nucleus,
cytoplasm, and mitochondria stained with different

fluorescent dyes are segmented from the image background
outside the cell using multiple pattern recognition and
image segmentation algorithms based on the pixel histo-
gram and morphological analysis. Next, the contours of seg-
mented organelles between neighboring slices, and the
interpolation of additional slices along the z-axis to create
cubic voxels are connected for 3D reconstruction and voxel
based calculations of morphology parameters such as size,
shape and volume. Four confocal image sections of a cell
are shown in Fig. 3a, a 3D structure of the cell is shown in
Fig. 3b and Fig. 3c shows a calculated diffraction image.

2.6 The Software for Modeling Light Scattering
of a Cell

The ADDA software simulates light scattering using the
realistic 3D morphology parameters reconstructed from the
confocal images of cells [28]. DDA is a method to simulate
light scattering from particles through calculating scattering
and absorption of electromagnetic waves by particles of
arbitrary geometry [15]. ADDA is a general implementation
of DDA for studying light scattering of many different par-
ticles from interstellar dusts to biological cells. The general
input parameters of ADDA define the optical and geometry
properties of a scatterer/particle including the shape, size,
refractive index of each voxel, orientation of the scatterer,
definition of incident beam, and many others. ADDA can be
configured for producing different outputs for different
applications. In this study, we collect the Muller matrix from
ADDA simulation to produce diffraction images using a ray-
tracing technique [29]. Fig. 1c shows a calculated diffraction
image generated from an ADDA simulation result. With this
and the 3D structure reconstruction software, one can vary
the structures of different intracellular organelles in a cell
and investigate the related changes in texture parameters of
the calculated diffraction images. These results enable the
study of correlations between the 3D morphology parame-
ters of a cell and the texture parameters of the diffraction
image. The correlation results build a foundation to obtain
candidates of morphology fingerprints from the texture
parameters for cell classification based on diffraction images.

3 FEATURE OPTIMIZATION AND VALIDATION

Different feature representations have been used for
machine learning based classification of diffraction images
of cells. For example, the frequency and the size of speckles
of a diffraction images was used for classifying viable cell
diffraction images and non-viable cell diffraction images

Fig. 3. An example of (a) confocal image sections of a cell, (b) a reconstructed 3D structure of a cell, and (c) an ADDA calculated diffraction image of a cell.
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[21]. GLCM features of a diffraction image were also used
for classifying cells [30]. In our recent work, multiple layers
of image blocks of a diffraction image were used for deep
learning of diffraction images [31].

The focus of this section is on feature optimization and val-
idation of GLCM features for SVM learning. Feature optimi-
zation is the process of selecting a subset of optimal features
from a set of features [23], [26]. An automated cell classifica-
tion based on GLCM features was developed in Hu’s previ-
ous work [30], [32]. However, the GLCM feature set often
contains highly correlated features and creates difficulties
such as computational intensiveness, slow learning, and in
some cases decreased classification accuracy [23]. Empirical
approaches are used to find a set of optimizedGLCM features
for the cell classification and automated selection of diffrac-
tion images. The selected features are validated by classifying
diffraction images using SVM, and the classification accuracy
is validated using the 10FCV and the confusionmatrix.

3.1 Feature Optimization for Cell Classification

In the first experiment, the dataset contains 600 diffraction
images of 6 types of cells (100 images per cell type). EFCS is
used to select an optimal set based on the features formula-
tion and numerical results on diffraction images. Further-
more, to compare and validate the accuracy of these features,
a second set of features are selected using CFS [26], which is
one of the most commonly used filter-type feature selection
algorithm. All the feature vectors computed in this experi-
ment are labeled with cell types to enable supervised learn-
ing. Also, we need to find an optimal displacement d for
GLCMand investigate the gray level of the diffraction images
that would result in high cell classification accuracy [23].

EFCS selects uncorrelated features by analyzing the trends
of all features. First, it lists the feature vectors that consists of
all feature values and labeled cell type for each diffraction
image. Next, each feature value is normalized. Third, a poly-
nomial regression is used to plot the data trend for every fea-
ture of all images. Finally, all features are plotted on a single
graph to analyze the correlation between features. In the
experiment, four GLCMs are calculated using orientation at
0, 45, 90, and 135 degree for each image, respectively. The
average of all 4 orientations is calculated for every single fea-
ture. We computed the 17 feature values for each of the 600
images using different displacement d at 1, 2, 4, 8, 16 and 32
and gray levels at 8, 16, 32, 64, 128 and 256. This resulted in
36 combinations for each image. Features are normalized to
values between 0 and 1. The GLCM features are categorized
into three groups—Contrast, Uniformity, and Correlation
[20]. Features from each group are plotted on a single graph
for all the 600 images with the same displacement and gray

level. Finally, uncorrelated features are obtained from each
group for all 108 (i.e., 3 groups� 36 combinations) graphs by
visual inspection. The nature of correlation between the fea-
tures remains similar in all combinations. Eight of the 17 fea-
tures from three groups are retained into the optimized
feature set, which are CON; IDM;VAR;ENT;DENT;COR;
SA; IMC1. The definition of each feature is described in [23]
and [20]. The details of this experiment are discussed in
Ding’s previouswork [23].

The CFS algorithm is executed in combination with
exhaustive search for the combination of gray level g and
displacement d for a total of 36 times for each of the 600
images. Although it yielded slightly different set of features
for each combination, a set of eight features is finally
selected. These are the features that were selected by the
highest number of times in all the combinations. The accu-
racy of cell classification of the 600 images using SVM based
on EFCS feature set is slightly better than the one with the
CFS selected features.

We used LIBSVM [33], an open source library for SVM, to
conduct the classification of diffraction images based on
GLCM features. The type of each cell is known in advance.
In the training phase, feature vectors and their correspond-
ing cell type labels are given to SVM. Next, the 10FCV
method is used to check the classification accuracy. This val-
idation splits the data into 10 groups of same size. Each
group is held out in turn and the classifier is trained on the
remaining nine-tenths; then its error rate is calculated on
the holdout set (one-tenth used for testing). The learning
procedure is repeated 10 times so that in the end, every
instance has been used exactly once for testing. Finally, the
ten error estimates are averaged to yield the overall error
estimation. Using the 8 EFCS selected features, the SVM
classification accuracy achieved for the classification of the
600 diffraction images is 91.16 percent, which is slightly bet-
ter than what is achieved by using all the 17 features [23].

Table 1 shows the cell classification results with different
configuration of gray level g and displacement d values.
Based on these results, we conclude that the 8 features
selected by EFCS are effective for SVM based cell classifica-
tion. Also, when the gray level g is 64 and displacement d is
2, the accuracy of cell classification is the highest. Therefore,
selecting appropriate gray level of the diffraction images
and displacement of GLCM could be important to the accu-
racy of SVM classification. The experiment result indicates
that 8 GLCM features in addition to the gray level 64 and
displacement 2 are the optimal feature set for classifying dif-
fraction images using SVM. However, this approach entails
enormous computational costs. We processed a total 21,600
diffraction images and extracted 4,320,000 feature values for
the feature selection experiment.

3.2 Feature Optimization for Image Selection

In the previous section, we noted that the selected 8 GLCM
features can be used for effectively classifying cell types
based on diffraction images using SVM. Guided by the fea-
ture optimization result generated in the previous section,
we investigated how the feature selection would affect
the accuracy of a different SVM classification. In this experi-
ment, SVM is applied for classifying diffraction images of via-
ble cells from those of ghost cell bodies and debris. We

TABLE 1
SVM Classification with EFCS Selected GLCM Features

d ¼ 1 d ¼ 2 d ¼ 4 d ¼ 8 d ¼ 16 d ¼ 32

g ¼ 8 69 71.83 75.16 76.33 73.33 64
g ¼ 16 79.66 82 83 82.33 77.833 70
g ¼ 32 86.16 89.33 89.33 83.83 80.16 70
g ¼ 64 88.16 91.16 89.5 84 79.16 69.16
g ¼ 128 89.5 91 89.16 84 79.33 71.5
g ¼ 256 89.83 90.83 89.5 86.16 83.33 74.5
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selected 1,800 images for each of the three cell types, and then
calculated the 17GLCM features for each imagewith distance
2 and gray level 64. We first trained the SVM classifiers with
all 17 features, and the accuracy of 10FCV for the classification
of all three types of cells is between 56 to 61 percent. Then each
timewe removed one feature from the featurematrix but keep
all the 8 features (e.g., CON; IDM;VAR;ENT;DENT;
COR;SA; IMC1) and retrained the SVM classifier. We found
that the accuracy of classification for all three classifiers
slightly increased when some of the features were removed.
Fig. 4 shows one of the experimental results, where the x axis
represents the number of features that were removed from
the feature matrix, and y axis represents the 10FCV classifica-
tion accuracy. After we removed the images that are difficult
to be classifiedmanually from the training dataset, the highest
classification accuracy for classifying the viable cells using
SVMwas increased to 84.6 percent. The result further demon-
strates that feature optimization is necessary for improving
the classification accuracy.

4 SELECTION AND VALIDATION OF IMAGE DATA

The diffraction images of cells taken using a p-DIFC may
include abnormal images due to cell debris or small particles,
and ghost cell bodies or aggregated spherical particles con-
tained in the sample. The abnormal images decrease the
accuracy of the cell classification [6]. If the sample size is
small, it is feasible to manually remove the abnormal images.
However, when thousands of diffraction images are needed
in the machine learning process, an automated approach for
separating normal diffraction images from abnormal one is
important to the performance and accuracy of the machine
learning. In this section, we introduce a machine learning
approach for automatically selecting normal diffraction

images from thewhole data set that includesmany abnormal
images produced from non viable cells or debris. Different
algorithms including SVM with GLCM features, SVM with
image preprocessing, and deep learning with CNN are com-
pared for their effectiveness in the image data selection.

4.1 The Data Set

Based on our previous experiment results, we know major-
ity of abnormal diffraction images are generated from cell
debris or small particles, and ghost cell bodies or aggre-
gated spherical particles. A ghost cell body or aggregated
spherical particle (simply called a fractured cell) normally
produces strip patterns in its diffraction image, whereas a
viable cell with intact structure (simply called a normal cell)
usually generates speckle patterns, and the cell debris or a
small particle (simply called debris) produces large diffuse
speckle pattern [6]. Fig. 5 shows 3 diffraction images with
different fringe patterns: Fig. 5a is a viable cell with the nor-
mal speckle pattern, Fig. 5b is a fractured cell with the strip
pattern, and Fig. 5c is the debris with the large diffuse
speckle pattern. The difference of the fringe patterns can be
easily observed from their borderlines as shown in Fig. 6,
extracted from the diffraction images using image process-
ing algorithms. The data set includes 2,000 diffraction
images for each of the three categories.

Based on the above observation, we developed a proce-
dure that uses different algorithms to classify diffraction
images into three categories based on their fringe patterns:
normal cells, fractured cells, and debris.

4.2 An SVM Based Image Data Selection

One of the straightforward approaches for automated selec-
tion of diffraction images of cells is to design an SVM classi-
fier based on the GLCM features of the images. We selected
2,000 diffraction images for each category, and then calcu-
lated the 17 GLCM features for each image. The feature
matrix consisting of training image feature vectors are input
to SVM for training the classifier. An image feature vector
includes the image type and its GLCM feature values. 10FCV
of the classification was conducted for each SVM classifier
and the highest accuracy for the classification of the diffrac-
tion images for normal cells, fractured cells and debris was
only 61 percent, Therefore, a simple SVM based diffraction
image selection is not good enough, an advanced technique
is needed for improving the accuracy of the classification.

4.3 An Image Processing Based Data Selection

To improve the accuracy of the classification of diffraction
images of normal cells, fractured cells and debris, images

Fig. 4. An experiment result of feature selection.

Fig. 5. A diffraction image and its scatterer of (a) a viable cell, (b) a ghost cell body, and (c) the debris [6].
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are preprocessed using advanced image processing algo-
rithms. The image data selection procedure is comprised of
four steps [6]. The first step is to find a set of borderline
length parameters as shown in Fig. 6 for differentiating the
strip pattern from the speckle pattern. Frequency histogram
of each diffraction image for measuring the speckle size is
calculated next. In the third step, the k-means clustering
algorithm is applied to calibrate image data and separate
images as strip and speckle patterns. The fourth step is to
precisely classify the calibrated diffraction images into large
diffuse speckles (i.e., debris) and normal speckles (i.e., nor-
mal cells) using SVM with GLCM features [6]. Compared to
the simple SVM based approach, each of the three classifica-
tions enjoys over 90 percent accuracy.

4.4 A Deep Learning Based Image Data Selection

The classification based on SVM with preprocessed image
data requires complex preprocessing including image proc-
essing and K-means clustering. That approach is not scal-
able since the classification is based on the frequency and
the size of the speckles in the diffraction image, which are
specifically defined for the classification of viable cells and
other particles. In this section, we introduce a deep learning
approach for the automated image selection. The diffraction
image dataset we used is still same as that used in the previ-
ous section. We used a deep learning framework called
Caffe [34], and a deep learning model called AlexNet [19] to
build the classifier. The size of the raw diffraction image is
640� 480 pixels, but the input image to AlexNet is
227� 227 pixels. The raw images have to be processed
before they can be used for training or testing the AlexNet
classifier. In addition, AlexNet needs a much larger training
dataset than an SVM does. The deep learning procedure for
the image selection is summarized as follows:

First, generate a training dataset. We produce many small
images at size 227� 227 pixels through cropping image sec-
tions from a raw diffraction image. First, find the brightest
10-pixel diameter spot in a raw diffraction image, and choose
the spot as the center and crop a 227� 227 pixels image from
the raw image. It is important tomake sure that each cropped
image is located within the original image. Next, choose a
new center which is a shift 5 pixels in a direction from the
center of the brightest spot to crop another 227� 227 pixels
image. Many different images can be produced through
shifting the center in a direction such as left or right with dif-
ferent distances. Different spots can be identified from an
image to produce even more training data. Based on light

scattering theory, a large portion of a diffraction image could
contain enough information to represent the whole image,
the appropriately cropped images should be good enough
for training and testing the deep learning based classifica-
tion. When we test the classification, any valid cropped
image from a raw image is used for representing the whole
image. However, we will experiment different approaches
such as pooling technique to find an optimal approach for
producing image data from the original one in the future. In
addition, multiple instance learning could be a promising
direction to address the size issue.

Second, each cropped diffraction image is labeled same as
its raw image—cells for normal cells, debris for debris and
small particles and strip for fractured cells, and is placed into
one of the three folders based on its label. In this experiment,
the images in each folder are divided into 8 equivalent group.
The first 6 groups are used as the training data, another group
as the validation data, and the last group as testing data. The
data folders of cell, debris, and strip include 105,072, 121,344,
and 99,216 cropped diffraction images, respectively.

Third, the training and testing is run with Caffe on
NVidia GPU K40c, and the number of iteration of the train-
ing is set to 10,000. We conducted a 8FCV for all three types
of images, and average classification accuracy for cell,
debris, and strip is 94.22, 97.52, and 90.34 percent, respec-
tively. The confusion matrix of the classification is shown in
Fig. 7. Compared to the SVM based classification, deep
learning based data selection gives higher classification
accuracy. However, deep learning needs large amount of
training data, and it does not work on raw images directly.
This could be a serious problem for other domain-specific
images. For example, a cytopathology image is much larger
and complex than a diffraction image, and it is extremely
challenging to obtain large number of cytopathology images
for deep learning. In that case, SVM based technique is still
an alternative for automated data selection.

5 METAMORPHIC TESTING OF SCIENTIFIC

SOFTWARE

It is difficult to know whether a reconstructed structure gen-
erated by the 3D reconstruction program represents the real
3D structure of a cell. Also, given an arbitrary input to
ADDA program, it is difficult to know the correctness of the
output. Both these scientific software products are typical of
non-testable systems due to unavailability of test oracles.
Therefore, we chose metamorphic testing to validate and

Fig. 6. The borderlines of (a) strip patterns, (b) normal speckles, and (c) large diffuse speckles in a diffraction image [6].
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verify these products and use an iterative approach for
developing MRs.

5.1 Metamorphic Testing

Metamorphic testing is a promising technique for solving
oracle problems in non-testable programs. It has been applied
to different domains such as bioinformatics, machine learn-
ing, compilers, partial differential equations solvers, large-
scale databases, and online service systems. Metamorphic
testing will become even more important for testing big data
systems since many of them suffer the test oracle problem.
Metamorphic testing aims at verifying the satisfiability of an
MR among the outputs ofMR related tests, rather than check-
ing the correctness of each individual output [7], [10]. If a vio-
lation of an MR is found, then the system under test (SUT)
must have defects [7]. Specifically, metamorphic testing cre-
ates tests according to anMRandverifies the predictable rela-
tion among the actual outputs of the related tests.

Let fðxÞ be an output of test x in program f and t be a
transformation function for an MR. Given test x (called a
source test), one can create a new metamorphic test
tðx; fðxÞÞ (called a follow-up test) by applying function t to
test x. The transformation allows testers to predict the rela-
tion between the outputs of test x and its transformed test
tðx; fðxÞÞ according to the MR [7]. However, the effective-
ness of metamorphic testing depends on the quality of the
identified MRs and tests generated from the MRs. Given a
metamorphic test suite with respect to an MR, violation of
the MR implies defects in the SUT, but satisfiability of an
MR does not guarantee the absence of defects. It is impor-
tant to evaluate the quality of MRs and their tests. It is even
more important to find a way for refining MRs and tests
based on testing and test evaluation results. In this research,
an iterative metamorphic testing is used for validating the
two scientific software systems in CMA.

5.2 Iterative Metamorphic Testing

The iterative metamorphic testing consists of three major
steps: develop initial MRs and tests, test execution and eval-
uation, and refine MRs.

Develop Initial MRs and Tests: Based on the domain
knowledge of the SUT and general framework of metamor-
phic testing [35], one can develop a set of initial MRs. The
source tests are produced using general test generation
approaches such as combinatorial testing, random testing
and category-choice framework, and then each source test
is transformed into a set of follow-up tests according to an
MR. A source test together with its follow-up test form a
test of the MR. The newly added test can be used for pro-
ducing additional tests based on MRs.

Test Execution and Evaluation: The SUT is executed with
every test, but outputs of the source test and its paired fol-
low-up test are verified by their related MR. As soon as the
SUT passes all tests, the testing is evaluated for test ade-
quacy. We evaluate the testing with program coverage crite-
ria, mutation testing, and mutated tests. A mutated test is a
paired source and follow-up test whose outputs would vio-
late their related MR. Mutated tests are used to check each
MR can differentiate a positive test from a negative one.
Mutation testing requires every mutant be killed by at least
an MR or weakly killed by a test. A mutant is weakly killed
when the output of a test from the mutated program is dif-
ferent from the original program.

Refine MRs: If a selected program coverage criterion can-
not be adequately covered, mutants cannot be killed or
weakly killed by existing tests or by simply adding new tests,
new MRs should be developed or existing MRs should be
refined. Analyzing existing software engineering data like
test results using advanced techniques such as machine
learning is a promising approach for developing high quality
test oracles and MRs [36]. The ultimate goal of an MR refine-
ment is to develop oracles that can verify individual tests.

5.3 Testing the 3D Structure Reconstruction
Software

The most difficult part in the 3D structure reconstruction soft-
ware is to correctly build the 3D structures of mitochondria in
a cell. Each confocal image section may include many mito-
chondria that are so close to each other that two mitochondria
in two adjacent sections could be incorrectly connected. The
wrong connection will result in a wrong 3D structure. How-
ever, it is infeasible to check the reconstructed 3D structure by
comparing it to the original cell that the confocal image was
taken from since the cell is either dead or its 3D structure has
been greatly changed while its reconstructed structure is pro-
duced. In this case, iterative metamorphic testing is an ideal
way for rigorously verifying the 3D structure reconstruction
function.We test the function following the three general steps.

Develop Initial MRs and Tests: Fig. 8 shows a sample input
to the program and its corresponding output, where (a) is a
sample confocal image section of a cell, and (b) is a sectional
view of the 3D reconstructed cell. We created 5 initial MRs
as listed below. The details of the MRs were reported in pre-
vious work [37], but we use them here to explain the itera-
tive process for developing MRs.

MR1: Inclusive/Exclusive, which defines the correlation
between the reconstructured 3D structure and the adding
or removing of mitochondria.

MR2: Multiplicative, defines the relation between the
reconstructed 3D structure and the size of selected mito-
chondria in the image sections.

Fig. 7. The confusion matrix for a deep learning algorithm for image
classification.
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MR3: Lengths, defines the relation between the recon-
structed 3D structure and the length of selected mitochon-
dria in the image sections.

MR4: Shapes, defines the relation between the recon-
structed 3D structure and the shape of selected mitochon-
dria in the image sections.

MR5: Locations, defines the relation between the recon-
structed 3D structure and the location of selected mitochon-
dria in the image sections.

Tests are generated through transforming existing tests
according to each MR. For example, according to MR1, an
artificial mitochondrion is added to one or more image sec-
tions in a stack of original image sections such as S using
Matlab to produce MR1 related image sections T as the
follow-up test. MR related source test and follow-up test are
executed one by one and their output 3D reconstructured
structures can be compared to determine whether the new
added mitochondrion is appropriately built.

Evaluation of MRs and Tests: Test adequacy coverage crite-
ria were evaluated for function coverage, statement cover-
age, definition-use pair coverage. The coverage difference
between a source test and its follow-up test help us detected
a defect in the original program [37]. Mutation test was also
conducted for evaluating the quality of the MRs and their
tests.

Refine MRs: MRs Inclusive/Exclusive and Multiplicative can
be further refined to determine the exact change in
mitochondria’s volume. For example, if an artificial mito-
chondrion was added to the confocal image sections of the
source test, the volume of the new added mitochondrion
can be calculated based on its 3D model using Matlab. Then
the volume difference between the reconstructed 3D struc-
tures of the source test and the follow-up one should be
only the new added mitochondrion volume. If the result is

different, something must be wrong. The refined MR is
more effective to find subtle errors such as the one shown in
Fig. 9, where A and B are supposed to be connected, but
new added C causes C and B be connected. The number of
mitochondria in the reconstructed 3D is the one as expected,
and volume of mitochondria in the reconstructed 3D is
increased as expected. But the increment of the volume in
the follow-up test is not same as the volume of the new
added mitochondrion, which would flag an error in the
reconstruction function. Therefore, MR2 can be refined as
MR6 defined as follows.

MR6: Volume. If an artificial mitochondrion whose vol-
ume is x is added to the confocal image sections, the volume
of mitochondria in the reconstructed 3D structure should be
increased by x.

The MR is still valid for MRs that are defined on remov-
ing or resizing a mitochondrion.

5.4 Testing ADDA

ADDA has been extensively tested with special cases and
other modeling approaches such as Mie theory [15], [28].
Fig. 10 is a comparison of the simulation results of Mie the-
ory and ADDA [28], which shows ADDA and Mie theory
produce nearly identical S11 results for a sphere scatterer.
However, Mie theory can only calculate a regular scatterer,
but ADDA can simulate a scatterer in any shape. Therefore,
it is necessary to test ADDA for simulating any shape of
scatterers using a different approach. A different implemen-
tation of DDA for testing ADDA is not available. Therefore,
iterative metamorphic testing was used for testing ADDA.
The purpose of testing ADDA is not to verify the correctness
of its implementation. Instead, it is used for validating
whether the simulation results from ADDA can serve the
investigation of the morphology fingerprint for classifying
cell types based on diffraction images. Preliminary results

Fig. 9. An illustration of a possible reconstruction error.

Fig. 8. (a) An example of a confocal image and (b) its processed image.

Fig. 10. A comparison between Mie theory and ADDA [28].
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on testing ADDA using metamorphic testing were reported
in Ding and Hu’s previous work [8], [38], but we conducted
a comprehensive and more rigorous testing in this research.

Develop Initial MRs and Tests. It is infeasible to find an ora-
cle for checking the correctness of the output of an ADDA
input since one input could produce a different output each
time. The output could include thousands of parameters, so
that the number of possible correct outputs of an input
could be enormous. Therefore, we define MRs on the rela-
tion between an ADDA input and the fringe pattern of the
diffraction image that is produced from an ADDA simula-
tion output. Although an ADDA input would produce dif-
ferent output each time, the fringe pattern of the diffraction
images generated from any output are supposed to be the
same. Each input parameter such as the shape, size, orienta-
tion, and refractive index of a scatterer is a candidate for
defining MRs, which define the relation between the change
of one parameter and the change of the fringe pattern in the
output diffraction image.

MR7: When the size, shape, orientation, refractive index or
internal structure of a scatterer is changed, the fringe pattern of
the diffraction image is changed.

The MR only considers the change of one parameter each
time. When the value of one of these parameters of a scat-
terer is changed, the fringe pattern of the output diffraction
image should be different to the original one. Of course, the
change of orientation should not affect a perfect sphere. The
fringe pattern can be compared manually by eyes or is com-
pared by the GLCM features calculated from the images.
For example, if a scatterer is changed from a sphere into an
ellipsoid without changing the value of any other parame-
ters, the fringe pattern of the ellipsoid is irregular compared
to the fringe pattern of the corresponding sphere. This is
shown in Figs. 11a and 11b, where (a) is a sphere, whose x,
y and z axes are 5 mm, and (b) is an ellipsoid, whose x and z

axes are 5 mm, and y is 7 mm. However, due to the complex-
ity of ADDA, it is infeasible to build an exact relation
between the change of a parameter and the fringe pattern of
the diffraction image in general. For example, Figs. 11c and
11d are two ADDA calculated diffraction images from the
same reconstructed 3D morphology parameters of a cell but
with different orientations. It impossible to know the precise
relation between the orientation and the fringe pattern of
the calculated diffraction images except the “difference”.
The relation “difference” is too broad to test ADDA ade-
quately. Additional MRs are needed. The idea is to identify
MRs that can better define the “difference” when one
parameter is changed. The ADDA simulation results of scat-
terers in regular shapes such as spheres have been tested
with Mie theory, which is the foundation for creating other
MRs for refining relation “difference”.

MR8: When the size of a sphere becomes larger, the texture
bright lines in the diffraction image become slimmer.

Fig. 12 shows the ADDA calculated diffraction images of
sphere scatterers with diameters in 5, 7, 9, and 12 mm,
respectively. The output examples satisfy MR8. Further-
more, we define an MR based on the relation between the
fringe pattern and a sphere scatterer with some portions
removed. For example, we can check how the fringe pattern
is changed when a sphere scatterer is cut into half.

MR9: When a portion of a sphere scatterer is removed, the
fringe pattern of the diffraction image is changed accordingly.

We first tested a sphere scatterer with diameter 3 mm,
and its ADDA result was checked against the result calcu-
lated from Mie theory. Then we used ADDA to simulate the
same sphere that was removed by half with the cut part
directly facing the incident light beam, and the orientation
is set as (0,0,0) [15]. We also conducted ADDA simulations
with the same sphere that had its top quarter that faces the
incident light beam removed, and the top outside 1/8 part

Fig. 11. The change of fringe patterns of diffraction images calculated with different configurations, (a) a sphere, (b) an ellipsoid, (c) and (d) are cells.

Fig. 12. Fringe patterns of ADDA calculated diffraction images of sphere scatterers with different diameters: (a) 5mm, (b) 7mm, (c) 9mm, and (d) 12mm.

DING ET AL.: A MACHINE LEARNING BASED FRAMEWORK FOR VERIFICATION AND VALIDATION OF MASSIVE SCALE IMAGE DATA 461

Authorized licensed use limited to: East Carolina University. Downloaded on May 28,2021 at 21:36:12 UTC from IEEE Xplore.  Restrictions apply. 



of the sphere was removed. The simulation results are
shown in Fig. 13. It is easy to find that the symmetry prop-
erty of the fringe pattern in the diffraction image of the
sphere is lost as expected when some part of it is removed.
Based on the same idea, we can check the change of the
fringe pattern when a sphere scatterer is added to the other.

MR10: When an identical sphere scatterer is added to a sphere
scatterer in a simulation, the fringe pattern of the diffraction
image is changed accordingly.

Wefirst calculated a diffraction image for a 5mm diameter
sphere using ADDA, and then we added one identical
sphere to form a bisphere scatterer. The two spheres are sep-
arated by 1.5mm and they are aligned along x axis. The orien-
tation of the bishphere is set as (0, 0, 0), which is same as the
single sphere. Figs. 14a and 14b show the ADDA calculated
diffraction images for a sphere scatterer and a bisphere scat-
terer, respectively. The fringe pattern in the diffraction image
of the bisphere scatterer clearly shows the two spheres in the
scatterer. If we changed the orientation of the bisphere from
(0,0,0) to (0, 270, 0) and (90, 90, 0), then the fringe patterns of
their diffraction images are changed as shown in Figs. 14c
and 14d. The results satisfyMR10 andMR7.

In order to create tests that can cover as many cases as
possible, the combinatorial testing method is used in this
research. For example, the four input parameters used for
testing ADDA are the scatterer size, shape, refractive index, and
orientation. The possible values of size are {3 mm, 5 mm, . . . ,
16 mm}, shapes are {sphere, ellipsoid, bisphere, prism, egg, cylin-
der, capsule, box, coated, cell1, cell2, . . .}, orientations are {(0, 0,
0), (10, 90, 0), (270, 0, 0), . . .}, and refractive index values are
{1.0, . . . 1.5}. Using pairwise testing, one can create many
tests, and then select the valid tests as the source tests. Next,
the source tests are used to create follow-up tests for each
MR. Using this method, many execution scenarios of

ADDA can be tested and their results can be systematically
verified using the MRs.

Evaluation of MRs and Tests. Several hundred tests were
created based on domain knowledge, combinatorial tech-
nique, and initial MRs. ADDA passed all tests for MR7 to
MR10 and the tests covered 100 percent statements of
ADDA program. Mutation testing was conducted to check
the effectiveness of the tests but it was applied only to one
critical module in ADDA. Instead of testing the software
with full mutants created with mutation testing tools, only a
few mutants were instrumented in the code manually. We
checked the consistency between the outputs of the mutated
program and the original one. In the case study, Absolute
Value Insertion (ABS) and Relational Operator Replacement
(ROR) are the two mutation operators that were used for
creating mutants. This is because that these two operators
achieve an 80 percent reduction in the number of mutants
and only 5 percent reduction in the mutation score as shown
in the empirical results reported by Wong and Mathur [39],
[40]. A total of 20 mutants (10 ABS mutants, and 10 ROR
mutants) were created and checked. Seventeen of them
were killed by crashing or exception of the program execu-
tion. The other 3 mutants were killed by the MRs due to the
absence of any diffraction pattern in the images. We found
that a slight change in ADDA may cause a catastrophic
error in the calculation. Therefore, creating powerful
mutants—ones that do not crash the software or produce
trivial errors—for testing ADDA is difficult.

Refine MRs. Since scatterers in regular shapes such as
sphere have been extensively tested [15], [28], we are more
interested in scatterers in irregular shapes such as cells.
ADDA software is used to investigate the correlation
between the 3D morphology of a cell and the fringe pattern
of its diffraction image. This is essential to understand how

Fig. 14. The change of fringe patterns of ADDA calculated diffraction images of a sphere and bisphere scatterers at different orientations: (a) Single
sphere, (b) bisphere at (0, 0, 0), (c) bisphere at (0, 270, 0), and (d) bisphere at (90, 90, 0).

Fig. 13. The change of fringe patterns of ADDA calculated diffraction images of a sphere scatterer having partial cut: (a) no cut, (b) 1/2 cut, (c) 1/4 cut,
and (d) 1/8 cut.

462 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: East Carolina University. Downloaded on May 28,2021 at 21:36:12 UTC from IEEE Xplore.  Restrictions apply. 



the diffraction images can be used for the cell classification.
Therefore, we can define MRs based on the classification of
diffraction images that are produced by ADDA. The first
two MRs are defined on the correlation of the GLCM fea-
tures among a group of related diffraction images, and the
last two MRs are defined through refining the previous
MRs on the classifications of ADDA calculated diffraction
images.

MR11: If a group of measured diffraction images are related to
a GLCM feature, then the same relation among the corresponding
calculated diffraction images exists.

The experiment process is summarized as follows: (1)
Select 100 p-DIFC measured diffraction images from one
cell type. (2) Calculate the 17 GLCM features for each image,
and plot the feature values and their corresponding image
IDs in a 2D diagram. (3) Check the relation of each feature
among the images. (4) Select another 100 cells whose cell
type are same to the calculated one. Then take the confocal
image sections for each cell using a confocal microscope. (5)
Reconstruct the 3D structures of the cells using the 3D
reconstruction software, and assign refractive index values
of organelles for each cell to produce 3D morphology
parameters. (6) Calculate diffraction images using ADDA
with the 3D morphology parameters. (7) Calculate the
GLCM features for each calculated diffraction image and
plot the feature values in a two-dimensional diagram. (8)
Compare the feature relation between the measured images
and the calculated ones. If a similar relation among the two
groups of diffraction images exists, the test passes. Other-
wise, further investigation such as producing more calcu-
lated images with different orientations is required.
Although the ADDA calculation and p-DIFC measurement
were conducted on the same type of cells, their GLCM fea-
ture values of the diffraction images could be substantially
different. This is because the unknown of the exact value of
the refractive index of the nucleus in a cell. However, it is
not a problem since we only care about the consistency
between the relation of a GLCM feature among ADDA cal-
culated diffraction images and the relation of the GLCM fea-
ture among the corresponding p-DIFC measured diffraction
images. Preliminary experimental results shown in Fig. 15
support MR11. However, the precise relation among the
same type of cell images are not easily detected based on
just one GLCM feature. The comparison of the relation of

the measured and calculated images is vaguely defined.
More advanced MRs are needed for adequately testing
ADDA.

Based on above discussion, we check how the fringe pat-
tern of an ADDA calculated diffraction image is correlated
to the change of cell morphology parameters. We know that
when the refractive index or the size of an intracellular
organelle, or the orientation of the scatterer is changed, the
fringe pattern of the ADDA calculated diffraction image
will change. We conducted an experiment to validate
ADDA via checking the relation between cell morphology
parameters and the fringe pattern of ADDA calculated dif-
fraction images. First, the 3D structure of a cell is con-
structed based on its confocal image sections using the 3D
reconstruction software. Next, a series of morphology
parameters are built by changing the value of one parameter
each time, such as resizing the nucleus of the cell or chang-
ing the refractive index values of a nucleus [37]. The series
of morphology parameters and the orientation are input to
ADDA for producing a series of diffraction images. The
GLCM feature values of each ADDA calculated diffraction
image are calculated, and finally the values of GLCM fea-
tures of the calculated diffraction images and the values of
the corresponding morphology parameter are plotted in a
2D diagram to check their correlation. For example, a viable
cell with intact structure would produce a diffraction image
with normal speckle patterns, but a ghost cell body would
produce a diffraction image with strip patterns due to its
high degree of symmetry in its structure. Therefore, one can
create a series of 3D structures of a cell through resizing the
nucleus in a viable cell. Then the change of the fringe pat-
tern defined in GLCM features in the calculated diffraction
images should be correlated to the change of the nucleus
structure in the morphology parameter. Previous experi-
ments have shown the correlation exists between the GLCM
features of p-DIFC measured diffraction images of cells and
their morphology parameters [6], [23]. This observation
helps us to develop MR70 as follows, which is a refined ver-
sion of MR7.

MR70: The fringe pattern of the diffraction image of a viable
cell, a ghost cell body and a debris particle is different. Specifically,
the fringe pattern of the diffraction image of a viable cell is a group
of small speckles, the fringe pattern of the diffraction image of a
ghost cell body is a group of stripes, and the fringe pattern of the

Fig. 15. (a) Values of selected GLCM features of measured diffraction images, it has 600 images for 6 types of cells [23]. (b) Values of two GLCM
features of 10 ADDA calculated diffraction images from the same type of cells.
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diffraction image of a debris particle is a group of large diffuse
speckles.

The diffraction images shown in Fig. 5 are ADDA calcu-
lated diffraction images. It is easy to find the fringe patterns
of the three types of images are consistent to the fringe pat-
terns of the corresponding p-DIFC measured images shown
in Fig. 16.

Finally, two MRs were developed based on the classifica-
tion of diffraction images using machine learning techni-
ques. The first one is on the classification of scatterers based
on their shapes to understand whether the morphology fea-
tures of the scatterers have been correctly modeled by
ADDA so that their diffraction images can be used for the
classification. If the shapes of the scatterers can be precisely
classified based on the calculated diffraction images, more
sophisticated MRs can be developed based on the classifica-
tion of cell types. We developed the second MR based on
the classification of different types of cells using ADDA cal-
culated diffraction images.

MR12: The ADDA calculated diffraction images can be classi-
fied by the shapes of their scatterers.

We produced 200 diffraction images for each shape of
scatterers using ADDA. The 200 images of the scatterers
that are in the same shape were generated with different
combinations of parameters—8 different sizes and 25 differ-
ent orientations of the scatterer. Since the refractive index
would substantially impact the fringe pattern of a diffrac-
tion image, all ADDA calculations are assigned with the
same refractive index of 1.06. A total of 600 images were
produced for three shapes: sphere, bisphere, and ellipsoid.
Each image is processed for the GLCM feature values and
labeled with the shape type of the scatterer. The values of
the eight selected GLCM features of a diffraction image and
its labeled shape type form a feature vector. The SVM classi-
fier is trained and tested with ADDA calculated diffraction
images using LIBSVM [33]. The classification accuracy from
10FCV for each shape of scatterers is 100 percent. The exper-
iment results indicate that ADDA is well implemented for
regular shape scatterers and the test passed MR12. In
ADDA, we can model a scatterer in any shape through spec-
ifying the voxels that build the scatterer. Different scatterers
can be modeled based on an MR and an initial scatterer.
Metamorphic testing can be conducted next via checking
the MR among the corresponding ADDA calculated diffrac-
tion images.

MR13: An ADDA calculated cell diffraction image can be
classified according to its cell type.

Per the experiment results discussed in Section 4, we
know diffraction images of cells can be used to accurately

classify the viable cells, debris particles, and ghost cell bod-
ies. Therefore, we can produce a number of diffraction
images for the three types of scatterers using ADDA and
then check whether the images can be correctly classified
using the machine learning algorithms. Fig. 5 shows the
ADDA calculated diffraction images of the three different
types of scatterers. They have the same patterns as those
images taken by p-DIFC shown in Fig. 16. Using the SVM
based classification approach discussed in Section 4, it is not
difficult to check whether the ADDA calculated diffraction
images can be correctly classified.

Fringe patterns derived from the GLCM features in
p-DIFC measured diffraction images have been successfully
used for classifying cell types [21], [30], [32]. Combining the
test results of MR12, ADDA calculated diffraction images of
cells should be sufficient for classifying cells. We simulated
25 orientations for the 3D morphology parameters of each
cell using ADDA. Each diffraction image is processed for
the GLCM features and labeled as the type of the cell. The
feature vector matrix consisting of the same type of cells is
used for training an SVM classifier. The 10FCV is used for
checking the classification accuracy. Our preliminary results
show that ADDA calculated diffraction images can be used
for classifying select cell types [6]. Recently, we tested the
classification of 30 ADDA calculated diffraction images
including 10 viable cells, 10 ghost cell bodies and 10 debris
particles using the deep learning classifier discussed in Sec-
tion 4.4. The classification accuracy for each category was
100 percent, which strongly suggested that the morphology
properties of the scatterers were appropriately modeled in
ADDA. However, there are many different types of cells,
and some of them are only slightly different in 3D struc-
tures. Whether diffraction image-based cell classification
can be used for classifying cell types that are only slightly
different in 3D structures is still an open question. The cell
types we used in all experiments are significantly different
in 3D morphology. If we still achieve high accuracy in clas-
sifying different types of cells that are only slightly different
in morphology parameters, it would be safe to conclude
that ADDA is well implemented for simulating the light
scattering of cells.

5.5 Discussion

Software components are one of the major parts in a big
data system as shown in Fig. 1. Verification and validation
of the software components are challenging due to the
absence of test oracles in many cases. The 3D reconstruction
software and ADDA software are two typical examples of
software that do not have test oracles, which are called

Fig. 16. A p-DIFC measured diffraction image of (a) a viable cell, (b) a ghost cell body, and (c) a debris particle.
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non-testable programs. Although metamorphic testing can
be used for testing the non-testable 3D structure reconstruc-
tion and ADDA software, the effectiveness of the testing is
highly dependent on the quality of MRs. Therefore, MRs
should be rigorously evaluated during the testing, and the
initial MRs should be iteratively refined based on test
results. We conducted two empirical studies on verification
and validation of non-testable software using the iterative
metamorphic testing approach. The same approach can be
used for testing any other software components including
regular software in a big data application. The experiment
results demonstrated that subtle defects can be detected by
the iterative metamorphic testing, but not by the regular
metamorphic testing. ADDA is difficult to test due to the
difficulty involved in developing highly effective MRs. The
empirical study has illustrated the iterative process for
building MRs using machine learning approach and dem-
onstrated its effectiveness for ADDA testing. If more data,
the one generated by more scatterers that have different
morphological structures and more scatterers from different
types of cells, can pass the MRs 7 through 13, it would be
safe to conclude that ADDA has been sufficiently validated.

6 RELATED WORK

Quality assurance of big data systems includes quality
assurance of datasets, data analytics algorithms, and big
data applications. In this paper, we proposed a framework
for the verification and validation of big data systems and
illustrated the process with a massive biomedical image
data system called CMA. The framework includes scientific
software testing, feature selection and validation of machine
learning algorithms, and automated data selection and vali-
dation. In this section, we discuss related work on these
three topics.

Data quality is critical to a big data system since poor data
could cause serious problems such as wrong prediction or
low accuracy of classification. The quality attributes of big
data systems include availability, usability, reliability, and
relevance. Furthermore, each attribute includes sub-attrib-
utes: availability encompasses accessibility, timeliness, and
authorization; usability includes documentation, metadata,
structure, readability and credibility; accuracy, integrity,
completeness, consistency and auditability are associated
with reliability [1], [41]. Gao, Xie and Tao have provided an
overview of these issues, discussed challenges, and list tools
for validation and quality assurance of big data systems [42].
They define big data quality assurance as the study and
application of quality assurance techniques and tools to
ensure the quality attributes of big data. Althoughmany gen-
eral techniques and tools have been developed for quality
assurance of big data, domain-specific techniques are typi-
cally needed. For example, data quality assurance in the
healthcare domain is quite different from those in biomedical
sciences or banking and financial services.

Web is one of the primary sources of big data, but the
trustworthiness of the web sources has to be evaluated.
There are many investigations on evaluating the veracity of
web sources using hyperlinks, browsing history, or the fac-
tual information provided by the source [43]. Furthermore,
some evaluations are based on the relationship between

web sources and their information [44]. Finding duplicates
in data gathered from different sources is also an important
quality assurance task in big data. Machine learning algo-
rithms such as Gradient Boosted Decision Tree (GBDT)
have been used for detecting duplicates [45]. Data filtering
is an approach for quality assurance through removing bad
data from data sources. For example, Apache Samza [46],
which is a distributed stream processing framework, has
been adopted for detecting and removing bad data. Nobles
et al. have conducted an evaluation of the completeness and
availability of electronic health record data. They identify
undesirable data in datasets using machine learning algo-
rithms such as SVM or deep learning. The undesired data
could be incorrectly labeled in training data, which is
known as class label noise. This could reduce the perfor-
mance of machine learning algorithms. To address these
problems, one can improve the machine learning algorithm
to handle poor data or improve the quality of the data
through filtering [47]. Due to the massive scale of big data,
automated filtering using machine learning is a preferred
choice. In this paper, we proposed a data filtering technique
based on automated data classification. The other quality
assurance techniques can be integrated into our framework
and vice versa.

Feature selection is a central issue in machine learning
for identifying a set of features to build a classifier for a
domain-specific task [26]. The process is to reduce irrele-
vant, redundant and noisy features to improve both learn-
ing performance and prediction accuracy. Hall reported a
feature selection algorithm called CFS to select features
based on the correlation of the features and the class they
would predict [26]. CFS has been used for cross checking
the feature selection for SVM based classification of diffrac-
tion images [23]. In this paper, we introduced an easy to use
and more practical approach for feature selection. Our
experimentally based feature selection would produce a
slightly better feature set in term of the accuracy of the clas-
sification of diffraction images [23]. How the feature selec-
tion would impact the classification accuracy or machine
learning cost has been investigated [48], [49]. More
advanced feature selection approaches such as the one dis-
cussed in [50] can be introduced into the framework pro-
posed in this paper. The feature selection discussed above
might not be effective for deep learning of biomedical
images. Our current work on resizing diffraction images
through random sampling or down-sampling pooling is
promising and will pave the way for using deep learning
for classification of diffraction images.

Testing of scientific software adequately is a grand chal-
lenge problem. One of the greatest challenges occurs due to
the oracle problem [9]. Many different approaches have
been proposed to address the oracle problem including test-
ing with special cases, experimental results, different imple-
mentations, and analysis of formal models of the software
[9]. However, none of these techniques can adequately test
the scientific software that is affected by the oracle problem.
Metamorphic testing is a promising technique to address
the problem though developing oracles based on MRs [7],
[10]. Metamorphic testing was first proposed by Chen et al.
[7] for testing non-testable systems. It has been applied to
several domains such as bioinformatics, machine learning,
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and online service systems. An empirical study has been
conducted to show the fault-detection capability of meta-
morphic relations [51]. A recent application of metamorphic
testing to validate compliers has found several hundred
bugs in widely used C/C++ compilers [52]. Metamorphic
testing has been applied for testing a large NASA image
database system [53]. Also, it has been successfully used for
the assessment of the quality of search engines including
Google, Bing, and Baidu [54]. As noted earlier, the quality
of metamorphic testing is highly dependent on the quality
of the MRs.

Knewala, Bieman and Ben-Hur recently reported a result
on the development of MRs for scientific software using a
machine learning approach which is integrated with data
flow and control flow information [36]. In our research, we
used test evaluation and test results for refining initially cre-
ated MRs and iteratively developing new MRs. Generation
of adequate tests in metamorphic testing is challenging due
to the complexity of data types and a large number of input
parameters in the SUT [9]. Combinatorial techniques [55]
used for testing CMA are powerful tools for generating tests
for metamorphic testing.

7 CONCLUSION

In this paper, we introduced a framework for ensuring the
quality of big data infrastructure CMA. Machine learning
based procedures including SVM and deep learning are
introduced to automate the data selection process. Also, an
experimentally based approach is proposed for feature opti-
mization to improve the accuracy of machine learning based
classification. An iterative metamorphic testing is used for
validating the scientific software in CMA, and machine
learning algorithms are used for developing and refining
MRs. Machine learning algorithms are evaluated through
cross validation and confusion matrix. The framework
addresses the most important issues of verification and vali-
dation in big data. Furthermore, it can also be used for veri-
fication and validation of any big data system in a
systematic and rigorous way.
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